A novel quasi-intermittent vibration assisted swing cutting device: Design and experimental investigation

Author:

Du Yongsheng1,Lu Mingming1ORCID,Lin Jieqiong1,Zhu Zhimin1ORCID,Gao Qiang1

Affiliation:

1. Key Laboratory of Micro-Nano and Ultra-precision Manufacturing of Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China

Abstract

Elliptical vibration assisted cutting (EVAC) is gradually being one of the most potential machining methods for difficult to machine materials. However, the elliptical trajectory causes periodic residual traces on machined surface. A novel quasi-intermittent vibration assisted swing cutting (QVASC) device driven by two piezoelectric actuators is proposed to reduce the residual traces between adjacent paths and improve surface quality. An X-shaped flexure hinge was used to suppress the mutual interference between two driving shafts and realize kinematic decoupling. The mechanical configuration and geometric parameters of the proposed device were designed based on the analyzing of kinematics, dynamics, and flexible characteristics. The effectiveness of the proposed device was verified by finite element analysis and off-line performance test. Tests results show that the maximum coupling ratio of motion axis, maximum motion stroke, and minimum resolution of QVASC device are 1.65%, 19.943 μm, and 9.55 nm, which are satisfied with the design and machining requirements. Finally, systematic turning experiments were carried out to verify the effectiveness of the proposed device in restraining cutting residual traces. The experimental results indicate that the proposed device can effectively inhibit the generation of periodic residual traces, which validates the feasibility of the QVASC device.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3