Effect of burnishing parameters on the surface quality and hardness

Author:

Cobanoglu Tamer1,Ozturk Sabri2

Affiliation:

1. Department of Manufacturing Engineering, Turkish Aerospace Industries (TAI), Ankara, Turkey

2. Department of Mechanical Engineering, Abant Izzet Baysal University, Bolu, Turkey

Abstract

In industrial manufacturing applications to improve the surface quality of cylindrical parts such as valves, pistons of hydraulic or pneumatic cylinders, pump shafts and bearing bores, some surface-finishing processes such as grinding, super finishing and honing are applied. Nevertheless, none of them provides to improve fatigue, wear and corrosion resistance. Shot peening and case hardening can improve these properties, but they are expensive and application of them takes more time. Burnishing can increase the surface hardness by generating compressive stresses on the surface and as a result, it improves fatigue and corrosion resistance in addition to providing better surface quality. Roller burnishing is a very simple and very low consumption power process and can be applied on a conventional or computer numerical control lathe. The effect of the burnishing parameters on the surface quality and the burnishing force were examined with experimental study. The experiments were carried out using AISI 1040 carbon steel material. It was concluded that the burnishing feed is the most significant factor affecting the surface quality. Experimental results were tested with analysis of variance.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid WCMFO Algorithm for Microhardness Improvement in Roller Burnishing of Brass (C3604);Journal of Scientific & Industrial Research;2024-02

2. Microstructure of surface plastically deformed layers processed with a combined hole machining tool;AIP Conference Proceedings;2024

3. Effect of slide burnishing on the corrosion resistance and surface roughness on high strength steels;Advances in Mechanical Engineering;2023-10

4. Effect of laser shock peening on austempered ductile iron;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-03-31

5. Surface study of the burnishing process when vertical high-power ultrasonics are applied;International Journal of Manufacturing Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3