Simulation and experimental research on the abrasive trajectories of plane lapping based on rotary swing drive

Author:

Zhu Jianhui12ORCID,Gao Hang1,Xu Yuchun2,Zhao Yanjun2,Wang Ningchang2,Shi Chaoyu2

Affiliation:

1. State Key Laboratory of High Performance Precision Manufacturing, Dalian University of Technology, Dalian, China

2. State Key Laboratory for High Performance Tools. Zhengzhou Research Institute for Abrasives & Grinding Co. Ltd, Zhengzhou, China

Abstract

In the pursuit of achieving exceptional surface shape accuracy for MPCVD (Microwave Plasma Chemical Vapor Deposition) polycrystalline diamond wafers during the free abrasive lapping process, plane lapping based on rotary swing drive was employed in this study. The crux of this study lay in the development of a comprehensive kinematic model, scrutinizing the motion behavior of abrasive particles, and probing the influence of parameters on the uniformity of abrasive trajectories. The results show that the eccentricity, arc chord length and speed ratio affect the probability of track coincidence rate, and then affect the distribution uniformity. And then the verification experiments solidifying the reliability of our kinematic model and affirming the veracity of simulation results. The best surface shape accuracy ( PV) of the MPCVD polycrystalline diamond wafer was 2.3 μm under optimal parameters, representing a substantial advancement compared to the original lapping method, which only yielded a PV value of 8.4 μm. This study provides a promising method for high surface shape accuracy of MPCVD polycrystalline diamond wafers with large sizes.

Funder

key science and technology research projects of Henan province

Important Science & Technology Specific Projects of Zhengzhou

major science and technology projects of Henan province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of kinematic parameters on lapping uniformity;Materials and Manufacturing Processes;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3