Shaped metal deposition technique in additive manufacturing: A review

Author:

Yilmaz Oguzhan1,Ugla Adnan A23

Affiliation:

1. Advanced Manufacturing Technology Research Group, Department of Mechanical Engineering, Faculty of Engineering, Gazi University, Ankara, Turkey

2. Department of Mechanical Engineering, Faculty of Engineering, Gaziantep University, Gaziantep, Turkey

3. Department of Mechanical Engineering, Faculty of Engineering, University of Thi-Qar, Al-Nasiriyah, Iraq

Abstract

Shaped metal deposition is a relatively new additive layered manufacturing method. It is a novel technique to build net-shaped or near-net-shaped metal components in a layer-by-layer manner via applying metal wire and selection of a heat source such as laser beam, electron beam, or electric arc. It is a manufacturing method used for production of complex featured and large-scaled parts, especially in aerospace and metal-die industries. This method can lower the cost of fabricated parts by reducing further machining and finishing processes and shortening lead time. This article presents a comprehensive literature review on shaped metal deposition, and it mainly aims to highlight some of the areas which were reported by the researchers in this field to give an extensive overview of shaped metal deposition processes, classification of its methods, and their applications. The presented literature review covers extensive details on microstructure, mechanical properties, and residual stresses induced in the metallic parts produced by various shaped metal deposition techniques as well as fabrication of dual-material parts. Additionally, grain refinement of the deposition morphologies using various techniques, especially the arc pulsation process, was mentioned. This study demonstrates that shaped metal deposition method using wire can be considered as a distinctive low-cost method for fabricating large-scaled components due to high deposition rates, high efficiencies, and dense part production capabilities. However, the accuracy and surface finish are less compared to laser and electron beam melting methods.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3