Numerical investigation of transient response of a coupled two-degrees-of-freedom symmetric airfoil before flutter

Author:

Ebrahem M1,Manzoor S1,Sheikh NA2,Ali Muzaffar1,Khan MM3

Affiliation:

1. Mechanical Engineering Department, University of Engineering and Technology, Taxila, Pakistan

2. Department of Mechanical Engineering, Islamic International University, Islamabad, Pakistan

3. Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad, Pakistan

Abstract

In this study, the numerical investigation of free dynamic response of a rigid, symmetric airfoil having two coupled degrees of freedom is performed. The airfoil is excited using two different mechanisms. Firstly, a mechanical excitation scenario is simulated using initial conditions for both the degrees of freedom. Dynamic airfoil response in terms of amplitudes of oscillation is recorded under no flow as well as uniform upstream flow conditions. In the second scenario, an upstream flow perturbation is introduced in the form of a gust superimposed on the otherwise uniform in-flow. Transient energy amplification behavior of the airfoil under both scenarios is monitored. The findings are presented in terms of dimensionless aerodynamic coefficients, oscillations amplitudes, and total energy of the airfoil. Detailed comparisons of the experimental data and results obtained using analytical models are developed and discussed using a very simple simulation methodology.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3