An introduction to NASA’s broadband acoustic absorbers that resemble natural reeds

Author:

Koch L Danielle1ORCID,Jones Michael G2ORCID,Bonacuse Peter J1,Miller Christopher J1,Johnston J Chris1,Kuczmarski Maria A1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH, USA

2. NASA Langley Research Center, Hampton, VA, USA

Abstract

Thin, lightweight, and durable broadband acoustic absorbers capable of absorbing sounds over a wide frequency range, especially below 1000 Hz, while also surviving harsh operational conditions such as exposure to sprays of liquid and solid debris and high temperatures are desired for many noise control applications. While today’s commercially available broadband acoustic liners are impressive, such as melamine foam and perforate-over-honeycomb structures, each style has its limitations. Motivated by the need to reduce aircraft engine noise pollution NASA has recently patented a broadband acoustic absorber that claims some benefit over existing acoustic liners. Inspired by nature, these structures resemble the geometry and acoustic absorption of bundles of natural reeds, slender grasses that grow in wetlands across the world. Proof-of-concept experiments have begun at NASA. This report summarizes the design, fabrication, and normal incidence impedance tube tests performed for assemblies of natural reeds and additively-manufactured plastic prototypes that resemble the irregular geometry of bundles of natural reeds. Some synthetic prototypes were tested with and without perforated face sheets. Results indicate that there are a number of synthetic designs that exhibit substantial acoustic absorption in the frequency range of 500 Hz to 3000 Hz, and especially below 1000 Hz, as compared to baseline acoustic absorbers of similar thicknesses and weights. Many of these prototypes have an average acoustic absorption coefficient greater than 0.6. Additionally, an annular prototype was designed and printed but not yet subjected to tests. This annular prototype of a multifunctional structure designed to transfer heat and absorb sound was developed to fit inside the NASA Glenn Research Center’s DGEN Aeropropulsion Research Turbofan engine testbed. This invention can be considered and developed for a variety of aerospace, automotive, industrial, and architectural noise control applications.

Funder

NASA ARMD AATT Project

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3