Affiliation:
1. Institut für Fluid-und Thermodynamik, University of Siegen, Siegen, Germany
Abstract
The effect of tip clearance in an axial fan on its aerodynamic and aeroacoustic performance is investigated experimentally as well as via a Lattice–Boltzmann flow simulation method. An increase in tip clearance degrades fan pressure rise and efficiency, but also increases significantly the overall sound power emitted by the fan. A large tip clearance causes a clear structure of well distinguishable unsteady vortices which interact with neighboring blades and hence produce an increase in broadband sound. Moreover, if, compared to the design flow rate, there is a moderate flow rate reduction, the local tip vortex systems of all individual blade tips form a circumferentially coherent flow structure, resulting in distinct humps of sound pressure in the acoustic far field. By means of a rigid ring-type protrusion fixed to the inner casing wall, the generation of the tip clearance vortices and slowly rotating coherent flow structures could be suppressed. As a consequence, the sound emitted by the fan is substantially reduced.
Subject
Acoustics and Ultrasonics,Aerospace Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献