A physics merged deep neural network-based prediction method for jet turbulent mixing noise

Author:

Bai Baohong12,Zhang Yingzhe123,Li Xiaodong4ORCID,Gao Junhui4

Affiliation:

1. Beijing Aircraft Technology Research Institute of Commercial Aircraft Corporation of China, Ltd, Beijing, China

2. Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design, Beijing, China

3. School of Aeronautic Science and Engineering, Beihang University, Beijing, China

4. School of Energy and Power Engineering, Beihang University, Beijing, China

Abstract

Turbulent mixing noise is a vital component of jet noise, and its rapid, accurate prediction has always been persistently pursued. Recent advancement in machine learning has been applied to jet noise prediction. However, these applications are pure curve fitting and lack physical constraints. In this study, a physics-merged deep neural network (PMNN)-based prediction method was developed for turbulent mixing jet noise by merging the physics of the jet noise. This deep neural network (DNN)-based method employed recent advancements in jet turbulent mixing noise containing large- and fine-scale turbulence structures. Two simple rational functions for large- and fine-scale turbulent noise similarity spectra were proposed to replace the original complex similarity spectra functions and incorporated into the DNN-based prediction method. For comparison, we present two data-driven DNN-based prediction methods (DDNN). The first DDNN method used the sound pressure level (SPL) as the output of neural networks, directly establishing the nonlinear relationship between the input features and SPL. In the second DDNN method, the dominant modes of the jet noise spectra extracted using the proper orthogonal decomposition method were merged with DNN. These DNN-based methods were then trained using a set of experimental data over a wide range of jet operating conditions. Their performance was evaluated and compared. It was evident that all these DNN-based methods were capable of predicting turbulent mixing noise reasonably well. In contrast to the DDNN methods, the PMNN method could provide insights into the jet turbulent mixing noise components. It demonstrates that the turbulent mixing jet noise spectra at the mid polar angle is generated by the large-scale noise component at low-frequency range and by the fine-scale noise component at high-frequency range.

Funder

National Key Research and Development Project

National Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3