An accurate triangular spectral element method-based numerical simulation for acoustic problems in complex geometries

Author:

Ye Ximeng1ORCID,Qin Guoliang1,Wang Yazhou1

Affiliation:

1. School of Energy and Power Engineering, Xi'an Jiaotong University, Shaanxi, China

Abstract

An accurate triangular spectral element method (TSEM) is developed to simulate acoustic problems in complex computational domains. With Fekete points and Koornwinder-Dubiner polynomials introduced, triangular elements are used in the present method to substitute quadrilateral elements in traditional spectral element method (SEM). The efficiency of discretizing complex geometry is enhanced while high accuracy of SEM is remained. The weak form of the second-order governing equations derived from the linearized Euler equations (LEEs) are solved, and perfectly matched layer (PML) boundary condition is implemented. Three benchmark problems with analytical solutions are employed to testify the exponential convergence rate, convenient implementation of solid wall boundary condition and capable discretization in complex geometries of the present method respectively. An application on Helmholtz resonator (HR) is presented as well to demonstrate the possibility of using the present method in practical engineering. The numerical resonance frequency of HR reaches an excellent agreement with the theoretical result.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local neural operator for solving transient partial differential equations on varied domains;Computer Methods in Applied Mechanics and Engineering;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3