Is an elliptic jet quieter than a round jet?

Author:

Viswanathan K.1ORCID

Affiliation:

1. The Boeing Company (Retired), Seattle, WA, USA

Abstract

Non-axisymmetric geometries, mainly elliptic and rectangular, have been proposed for the reduction of jet noise vis-à-vis round nozzles. Most of the studies of these nozzles are from unheated jets and are restricted to nozzles of very small size. Furthermore, all of them have been carried out at static conditions, thereby rendering their value to insignificance for practical applications. All engines in service with long ducts and a confluent nozzle incorporate an internal lobed mixer. The aeroacoustic characteristics of an elliptic compound nozzle that represents the geometry of an existing low bypass ratio (BPR) turbofan engine, is investigated at 1/7th scale in this study. Typical engine cycle conditions are chosen; data are acquired statically and in the presence of a flight stream. The aspect ratio of the nozzle is 2.0; higher aspect ratios are not suitable for engine applications. The results are compared with a round compound nozzle with the same internal geometry, so as to assess the acoustic benefit, if any, of the elliptic nozzle. Both a simple internal splitter and an in-service lobed mixer have been considered. The elliptic nozzle introduces azimuthal asymmetry even for an unheated jet; the magnitude of azimuthal variation becomes pronounced for heated jets. Typically, the lowest level of noise is observed towards the narrow side of the elliptic nozzle (ϕ = 0°); the noise level gradually increases and reaches a maximum towards the broader side (ϕ = 90°). Though there are some superficial similarities between the elliptic and beveled nozzles, it is shown that the noise characteristics are very different. A systematic study is carried out, with step-by-step build up to realistic geometry, with forward flight. A large noise reduction of ∼3 to ∼4 EPNdB is observed for the splitter nozzle under static conditions. The introduction of a realistic lobed mixer reduces this benefit to close to zero. Finally, there is a noise increase at all azimuthal angles with forward flight. Therefore, the elliptic nozzle does not provide any EPNL benefit for actual nozzle geometry and consequently does not constitute a viable design for noise reduction. The importance of evaluating noise reduction concepts using appropriate geometry and under realistic forward flight conditions is emphasized once again.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3