Predicting Soil Cation Exchange Capacity in Entisols with Divergent Textural Classes: The Case of Northern Sudan Soils

Author:

Adam Mutwakil1,Ibrahim Ibrahim1,Sulieman Magboul1ORCID,Zeraatpisheh Mojtaba2ORCID,Mishra Gaurav3,Brevik Eric C.4ORCID

Affiliation:

1. University of Khartoum, Sudan

2. Henan University, China

3. Forest Management Rain Forest Research Institute, India

4. Southern Illinois University, USA

Abstract

Cation exchange capacity (CEC) is an important soil property because it affects the assimilation of nutrients and buffers against soil acidification. Thus, knowledge of CEC is considered key to developing agricultural and environmental models for land management planning. However, in developing countries such as Sudan, there is a lack of soil CEC data due to the absence of research projects and funding to develop this information. Therefore, this research was conducted to predict CEC for large areas using specific soil physical characteristics, including soil texture and saturation percentage (SP), for which there is potentially available data. To achieve this goal, the properties of 430 soil samples (301 for training and 129 for validation) were obtained from the soil database of the Soil Survey Administration, Ministry of Agriculture, Sudan, which had different soil depth intervals (0–0.3 m, 0.3–0.6 m, 0.6–0.9 m, 0.9–1.5 m, and >1.5 m) from Entisols in the Northern State of Sudan. The data were stratified into homogeneous groups based on the textural classes of the main soil order. Then, regression models were performed and evaluated using the coefficient of determination ( R2), standard error of the estimate (SEE), and root mean square error (RMSE). The results indicated that in individual Entisols and textural classes, the combined soil covariates silt, clay, and SP were the best properties to predict CEC values ( R2 ranged from 0.86 to 0.99). The regression models did not provide statistically significant results for the silty clay loam textural class ( R2 ranged from 0.01 and 0.35). The findings of this modeling study could be applied to other Entisols worldwide with divergent textural classes, which could be used to verify the suggested CEC pedotransfer functions and/or improve them. This would help farmers correctly design soil management plans and prevent acidification issues if combined with other soil properties data.

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3