Soil Nitrous Oxide Emissions Following Crop Residues Management in Corn-Wheat Rotation Under Conventional and No-Tillage Systems

Author:

Mirzaei Morad1,Gorji Anari Manouchehr1,Taghizadeh-Toosi Arezoo2,Zaman Mohammad3,Saronjic Nermina4,Mohammed Safwan5,Szabo Szilard5,Caballero-Calvo Andrés6ORCID

Affiliation:

1. University of Tehran, Karaj, Iran

2. Danish Technological Institute, Aarhus, Denmark

3. International Atomic Energy Agency, Vienna, Austria

4. University of Natural Resources and Life Sciences (BOKU), Vienna, Austria

5. University of Debrecen, Hungary

6. University of Granada, Spain

Abstract

Agricultural activity is the major anthropogenic source of nitrous oxide (N2O) emissions from terrestrial ecosystems. Conservation agriculture including crop residue management can play a key role in enhancing soil resilience to climate change and mitigating N2O emissions. We investigated the effects of crop residue rates, including 100 % (R100), 50 % (R50), and residue removal (R0), on N2O emissions in corn-wheat rotation under conventional (CT) and no-tillage (NT) systems. The key factors evaluated affecting N2O emissions included soil temperature, soil moisture, soil ammonium, and soil nitrate concentrations. Results showed that the N2O emissions increased with the increasing rate of residue under both CT and NT systems. Both R100 and R50 significantly ( p < .05) increased the N2O emissions compared to R0 during the annual rotation cycle. Soil moisture and mineral nitrogen (ammonium and nitrate) were the main driving factors that stimulated N2O emission in both CT and NT systems. In the NT and CT systems, cumulative N2O emissions showed a significant increase with R50 (+75.5 % in NT, +36.5 % in CT) and R100 (+134 % in NT, +40 % in CT) as compared to R0. Furthermore, no significant differences were found between R100 and R50 in the CT system, while in the NT system significant increases were observed for R100 compared to R50. Overall, our study justified as a first approach only during the first year that crop residue removal led to decreased N2O emissions under semi-arid conditions. However, due to the deteriorating impact of crop residue removal on crop productivity and soil C sequestration, this management method cannot be considered a sustainable agronomic practice. We suggest long-term studies to determine the appropriate rate of postharvest crop residue to achieve less N2O emissions and climate-friendly agricultural practices.

Funder

National Science Foundation

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3