Time Series Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern Ethiopia

Author:

Ayele Gebiaw T1,Tebeje Aschalew K2,Demissie Solomon S3,Belete Mulugeta A4,Jemberrie Mengistu A5,Teshome Wondie M6,Mengistu Dereje T7,Teshale Engidasew Z8

Affiliation:

1. Australian Rivers Institute and School of Engineering, Griffith University, Nathan, QLD, Australia

2. Amhara Design and Supervision Works Enterprise, Bahir Dar, Ethiopia

3. Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA, USA

4. Faculty of Civil and Water Resources Engineering, Bahir Dar University, Bahir Dar, Ethiopia

5. School of Civil Engineering and Architecture, Adama Science and Technology University, Adama, Ethiopia

6. Faculty of Natural and Computational Sciences, Debre Tabor University, Debre Tabor, Ethiopia

7. Amhara Water Works Construction Enterprise, Bahir Dar, Ethiopia

8. Ethiopian Ministry of Water Resources, Addis Ababa, Ethiopia

Abstract

Land use planners require up-to-date and spatially accurate time series land resources information and changing pattern for future management. As a result, assessing the status of land cover change due to population growth and arable expansion, land degradation and poor resource management, partial implementation of policy strategies, and poorly planned infrastructural development is essential. Thus, the objective of the study was to quantify the spatiotemporal dynamics of land use land cover change between 1995 and 2014 using 5 multi-temporal cloud-free Landsat Thematic Mapper images. The maximum likelihood (ML)-supervised classification technique was applied to create signature classes for significant land cover categories using means and variances of the training data to estimate the probability that a pixel is a member of a class. The final Bayesian ML classification resulted in 12 major land cover units, and the spatiotemporal change was quantified using post-classification and statistical change detection techniques. For a period of 20 years, there was a continuously increasing demand for arable areas, which can be represented by an exponential growth model. Excepting the year 2009, the built-up area has shown a steady increase due to population growth and its need for infrastructure development. There was nearly a constant trend for water bodies with a change in slope significantly less than +0.01%. The 2014 land cover change statistics revealed that the area was mainly covered by cultivated, wood, bush, shrub, grass, and forest land mapping units accounting nearly 63%, 12%, 8%, 6%, 4%, and 2% of the total, respectively. Land cover change with agro-climatic zones, soil types, and slope classes was common in most part of the area and the conversion of grazing land into plantation trees and closure area development were major changes in the past 20 years.

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3