On the Flexible Neo-Normal MSAR MSN-Burr Control Chart in Air Quality Monitoring

Author:

Rasyid Dwilaksana Abdullah1ORCID,Iriawan Nur1ORCID,Mashuri Muhammad1

Affiliation:

1. Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Abstract

Air quality significantly influences human health and the environment, necessitating a robust monitoring to detect abnormalities. This paper aims to develop a new model to accurately capture air quality data’s structural changes and asymmetrical patterns. We introduce the neo-normal Markov Switching Autoregressive (MSAR) Modified Skew Normal Burr (MSN-Burr) model, called neo-normal MSAR MSN-Burr. This model extends the MSAR normal framework, handling symmetrical and asymmetrical patterns in air quality data. The MSN-Burr distribution is employed for accurate estimation of skewed and symmetric data. The model efficiency is demonstrated through simulation studies generating symmetric data with normal, double exponential, and Student- t distributions, followed by application to real air quality data using Stan language. The proposed model successfully adapts to asymmetric structural changes, as evidenced by creating the Highest Posterior Distribution (HPD) for upper and lower limits. The model identifies two regimes representing normal and abnormal air quality conditions, with modes of 8 and 19 µg/m3, respectively. The MSAR-MSN-Burr model exhibits a 32.27% RMSE improvement in simulations and a 16.4% RMSE improvement in real air quality data over the normal-MSAR model. The proposed neo-normal MSAR MSN-Burr model is significantly enhancing the accuracy of air quality monitoring, providing a more efficient tool for detecting air quality abnormalities.

Funder

Institut Teknologi Sepuluh Nopember

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3