Enhanced sensitivity for light and electron microscopic in situ hybridization with multiple simultaneous non-radioactive oligodeoxynucleotide probes.

Author:

Trembleau A,Bloom F E

Abstract

Although oligonucleotide probes are useful for in situ hybridization, their low sensitivity compared to riboprobes and cDNA remains a problem. We have systematically examined the protocols to provide a general procedure that increases the sensitivity of oligoprobes for light and electron in situ hybridizations by using mixtures of multiple non-overlapping oligonucleotides (multi-oligoprobes). The protocol achieves these improvements with both radioactive and non-radioactive oligoprobes. With 33P-labeled probes in a semiquantitative assay, we found that mixtures of up to six vasopressin-directed multi-oligoprobes, each employed at saturating concentration, led to an additive signal with no significant increase of the background. Using this approach with non-radioactive oligoprobes, we were able to detect in the hypothalamus several low or moderately abundant mRNAs, such as vasopressin heterogeneous nuclear RNA and the galanin, dynorphin, and tyrosine hydroxylase mRNAs. Moreover, we showed that multi-oligoprobes used in a pre-embedding procedure were suitable for studying the ultrastructural compartmentalization of moderately abundant mRNAs. Finally, with the same basic approach we demonstrated that two sets of multi-oligoprobes can be combined for simultaneous detection of two different mRNAs using fluorescent dyes, making this approach suitable for high-resolution confocal analyses. Overall, our data demonstrate that multi-oligoprobes provide a sensitive tool of choice for various applications in which both well-preserved morphology and high sensitivity are needed. In particular, these probes appear ideal for study of the comparative subcellular localization of mRNAs at both the light and the electron microscopic level.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3