The role of an ambient pressure oxygen source during one-lung ventilation for thoracoscopic surgery

Author:

Pfitzner J.1

Affiliation:

1. Department of Anaesthesia, The Queen Elizabeth Hospital, Woodville, South Australia

Abstract

Video-assisted thoracoscopic surgery is facilitated by prompt collapse of the non-ventilated (‘operated’) lung, and interrupted and impeded if there is a need for oxygen (O2) delivery by continuous positive airways pressure in order to manage hypoxaemia. It has been proposed that connecting an ambient pressure O2 source to the airway of the non-ventilated lung at the time one-lung ventilation is initiated and before the chest is opened will, by avoiding entrainment of ambient nitrogen, serve to facilitate lung collapse. It has also been proposed that leaving the O2 source connected will enable, not only ongoing apnoeic oxygenation before the chest is opened, but also the thoracoscopic procedure to commence with the operated lung fully pre-oxygenated (with an inspired oxygen fraction of 1), and apnoeic oxygenation to continue throughout the operative procedure in those patients who exhibit a degree of small airways patency at ambient pressure. In reality, several factors can influence the speed of collapse of the operated lung, and very many factors can influence the incidence of hypoxaemia during one-lung ventilation. It therefore appears unlikely that the necessary evidence to support these proposals will be forthcoming from randomised clinical studies on large numbers of patients. Rather, the necessary evidence may only be provided by specifically designed within-patient clinical measurement studies. Nevertheless, it is argued that, in the meantime, there is already sufficient rationale for an ambient pressure O2 source to be connected to the airway of the non-ventilated lung, and for it to remain connected for the duration of one-lung ventilation.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3