Affiliation:
1. Department of Physiotherapy, Royal Brisbane and Women's Hospital, Herston, Queensland
Abstract
Ventilator hyperinflations are used by physiotherapists for the purpose of airway clearance in intensive care. There is limited data to guide the selection of mechanical ventilator modes and settings that may achieve desired flow patterns for ventilator hyperinflation. A mechanical ventilator was connected to two lung simulators and a respiratory mechanics monitor. Peak inspiratory (PIFR) and expiratory flow rates (PEFR) were measured during manipulation of ventilator modes (pressure support ventilation [PSV], volume-controlled synchronised intermittent mandatory ventilation [VC-SIMV] and pressure-controlled synchronised intermittent mandatory ventilation [PC-SIMV]) and ventilator settings (including set tidal volume, positive end-expiratory pressure, inspiratory flow rate, inspiratory pause, pressure support, inspiratory time and/or inflation pressure). Additionally, each trial was conducted with high (0.05 l/cmH2O) and low (0.01 l/cmH2O) compliance settings on the lung simulators. Each trial was dichotomised into success or failure under three categories (attainment of PIFR/PEFR less than or equal to 0.9, PEFR-PIFR greater than 17 l/min, PEFR greater than or equal to 40 l/min). A total of 232 trials were conducted (96 VC-SIMV, 96 PC-SIMV, 40 PSV). A greater proportion of VC-SIMV trials were ceased due to high peak inspiratory pressures (35%). However, VC-SIMV trials were more likely to be successful at meeting all three outcome measures (26 VC-SIMV trials, 7 PC-SIMV trials, 0 PSV trials). It was found that manipulation of settings in VC-SIMV mode appears more successful than PSV and PC-SIMV for ventilator hyperinflations.
Subject
Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献