Anaesthesia Circuits, Humidity Output, and Mucociliary Structure and Function

Author:

Branson R. D.1,Campbell R. S.1,Davis K.1,Porembka D. T.1

Affiliation:

1. Department of Surgery, University of Cincinnati Medical Center, Ohio, U.S.A.

Abstract

We compared the effects of humidity delivered by the circle system at low fresh gas flows (FGF) with a conventional two-limb and coaxial circuit on the structure and function of the tracheobronchial epithelium in dogs. Animals were anaesthetized and mechanically ventilated using an anaesthesia ventilator to maintain normocarbia. Group I (control) animals received a FGF equal to the required minute ventilation mimicking an open circuit technique. Group II and III animals had FGF set at 20% of the required minute ventilation. Group II used a two-limb circuit and Group III used a coaxial circuit. Relative humidity and temperature of inspired gases were measured at baseline and hourly afterwards. In the first experiment, biopsies of the tracheobronchial tree were obtained bronchoscopically at baseline and then hourly for six hours. Microscopic examination of these samples allowed calculation of mean ciliary length. In the second experiment, tracheal mucus flow velocity (TMFV) was measured at baseline and hourly afterward, using a cinebroncho-fibrescopic method. Delivered absolute humidity was greatest with low FGF and the coaxial circuit, followed by low FGF and a conventional circuit, and high FGF (15±1.4 vs 9±0.8 vs 5±0.4 mg H2O, P<0.01) after two hours. Mean cilia length (μ m) and TMFV (mm/min) fell during the first hour in all three groups. At hour two TMFV returned to baseline in Group III and was significantly greater than Groups I and II (0.8±0.4 vs 8.6±1.1 vs 15.4±2.1, P<0.001). Mean ciliary length demonstrated a similar pattern with reductions from baseline in all three groups for the first two hours. Groups II and III had an increase in cilia length beginning at hour three and were both significantly greater than Group I at hours 3 through 6 (1.3±0.5 vs 3.2±1.1 vs 4.2±0.8, P <0.001). Alterations in tracheobronchial structure and function result from exposure to dry gases and are amplified by the duration of exposure. Our findings suggest a minimum of 12 to 15 mg H2O/l is necessary to prevent these alterations. In this study, the combination of low FGF and a coaxial anaesthesia circuit reached this minimum threshold more quickly than a conventional two-limb circuit.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3