The Impact of Ignoring Measurement Error when Estimating Sample Size for Epidemiologic Studies

Author:

Devine Owen1

Affiliation:

1. Centers for Disease Control and Prevention

Abstract

The author presents two examples illustrating the bias in sample-size estimates that can result from ignoring measurement error among study variables. The first example examines the impact of ignoring misclassification of the study's outcome variable on the accuracy of sample-size estimates. In addition, the author outlines a simple yet effective means of adjusting sample-size estimates to account for outcome misclassification. In the second example, the author illustrates the potential for severe underestimation of required sample size in studies using linear regression to evaluate associations between the outcome of interest and an independent variable subject to classical measurement error. The author concludes with a discussion of pertinent literature that might be helpful to study planners interested in adjusting sample-size estimates to account for measurement errors in both outcome and predictor variables.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3