Affiliation:
1. Centers for Disease Control and Prevention
Abstract
The author presents two examples illustrating the bias in sample-size estimates that can result from ignoring measurement error among study variables. The first example examines the impact of ignoring misclassification of the study's outcome variable on the accuracy of sample-size estimates. In addition, the author outlines a simple yet effective means of adjusting sample-size estimates to account for outcome misclassification. In the second example, the author illustrates the potential for severe underestimation of required sample size in studies using linear regression to evaluate associations between the outcome of interest and an independent variable subject to classical measurement error. The author concludes with a discussion of pertinent literature that might be helpful to study planners interested in adjusting sample-size estimates to account for measurement errors in both outcome and predictor variables.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献