A Natural-Language-Processing-Based Procedure for Generating Distractors for Multiple-Choice Questions

Author:

Baldwin Peter1ORCID,Mee Janet1,Yaneva Victoria1,Paniagua Miguel1,D’Angelo Jean1,Swygert Kimberly1,Clauser Brian E.1

Affiliation:

1. National Board of Medical Examiners, Philadelphia, PA, USA

Abstract

One of the most challenging aspects of writing multiple-choice test questions is identifying plausible incorrect response options—i.e., distractors. To help with this task, a procedure is introduced that can mine existing item banks for potential distractors by considering the similarities between a new item’s stem and answer and the stems and response options for items in the bank. This approach uses natural language processing to measure similarity and requires a substantial pool of items for constructing the generating model. The procedure is demonstrated with data from the United States Medical Licensing Examination (USMLE®). For about half the items in the study, at least one of the top three system-produced candidates matched a human-produced distractor exactly; and for about one quarter of the items, two of the top three candidates matched human-produced distractors. A study was conducted in which a sample of system-produced candidates were shown to 10 experienced item writers. Overall, participants thought about 81% of the candidates were on topic and 56% would help human item writers with the task of writing distractors.

Publisher

SAGE Publications

Subject

Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3