Least Squares and Robust Rank-Based Double Bootstrap Analyses for Time-Series Intervention Designs

Author:

Zhang Shaofeng1,McKean Joseph W.1,Huitema Bradley E.2ORCID

Affiliation:

1. Department of Statistics, Western Michigan University, Kalamazoo, MI, USA

2. Department of Psychology, Western Michigan University, Kalamazoo, MI, USA

Abstract

Time-series intervention designs that include two or more phases have been widely discussed in the healthcare literature for many years. A convenient model for the analysis of these designs has a linear model part (to measure changes in level and trend) plus a second part that measures the random error structure; the error structure is assumed to follow an autoregressive time-series process. Traditional generalized linear model approaches widely used to estimate this model are less than satisfactory because they tend to provide substantially biased intervention tests and confidence intervals. We describe an updated version of the original double bootstrap approach that was developed by McKnight et al. (2000) to correct for this problem. This updated analysis and a new robust version were recently implemented in an R package (McKean & Zhang, 2018). The robust method is insensitive to outliers and problems associated with common departures from normality in the error distribution. Monte Carlo studies as well as published data are used to demonstrate the properties of both versions. The R code required to perform the analyses is provided and illustrated.

Publisher

SAGE Publications

Subject

Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3