Effects of individual factors on perceived emotion and felt emotion of music: Based on machine learning methods

Author:

Xu Liang1,Wen Xin1,Shi Jiaming1,Li Shutong1,Xiao Yuhan2,Wan Qun3,Qian Xiuying1ORCID

Affiliation:

1. Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, P.R. China

2. Hangzhou Data for Truth Technology Co., Ltd., Hangzhou, P.R. China

3. Zhejiang Big Data Exchange Center, Jiaxing, P.R. China

Abstract

Music emotion information is widely used in music information retrieval, music recommendation, music therapy, and so forth. In the field of music emotion recognition (MER), computer scientists extract musical features to identify musical emotions, but this method ignores listeners’ individual differences. Applying machine learning methods, this study formed relations among audio features, individual factors, and music emotions. We used audio features and individual features as inputs to predict the perceived emotion and felt emotion of music, respectively. The results show that real-time individual features (e.g., preference for target music and mechanism indices) can significantly improve the model’s effect, and stable individual features (e.g., sex, music experience, and personality) have no effect. Compared with the recognition models of perceived emotions, the individual features have greater effects on the recognition models of felt emotions.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Music

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3