Cycle slip detection and repair for BeiDou-3 triple-frequency signals

Author:

Fan Xiangxiang1ORCID,Tian Rui1,Dong Xurong1,Shuai Weiyi1,Fan Youchen1

Affiliation:

1. Department of Satellite Positioning and Navigation, Space Engineering University, Beijing, China

Abstract

When carrier phase observations are applied to high-precision positioning, how to handle the cycle slip is an unavoidable problem. For cycle slip correction, detection combination noise and the ionospheric delay are two crucial factors. Specifically, the drastic changes in the ionosphere and the increased noise of code observations will increase the failure probability of cycle slip detection. To reduce the influence of code observation noise and ionospheric bias, a novel cycle slip detection method for BDS-3 satellites is proposed. Considering that code measurement noise is closely related to the satellite elevation angle, an elevation-based model is built to evaluate the code measurement noise. Firstly, two modified code-phase combinations are selected optimally based on 1% missed detection rate and 99% success detection rate to minimize the effects of code measurement noise. However, the second modified code-phase combination is more affected by ionospheric delay bias, so ionospheric bias of current epoch needs to be corrected. To reduce the influence of ionospheric bias, two moving windows of time-differenced ionospheric delay are introduced to correct the ionospheric bias of the second code-phase combination. Experiments with BeiDou-3 data are implemented in three different scenarios. To verify the effectiveness of the algorithm in the environment of high code observations noise, Gaussian noise is added to the code observations in the first scenario, and the results demonstrate that the success rate of cycle slip detection and repair is still greater than 95% when the standard deviation of Gaussian noise is 0.8 m. The second scenario is carried out under low ionospheric activity, and results indicate that the proposed method significantly reduces the times of failed detection and repair. Moreover, in the third scenario, BeiDou-3 data with cycle slips of different types under high ionospheric activity are tested, and all cycle slips can be correctly detected and corrected.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3