Optimization for medical logistics robot based on model of traveling salesman problems and vehicle routing problems

Author:

Jin Hui12ORCID,He Qingsong1,He Miao13,Lu Shiqing1,Hu Fangchao12ORCID,Hao Daxian3

Affiliation:

1. School of Mechanical Engineering, Chongqing University of Technology, Chongqing, China

2. Robot and Intelligent Manufacturing Technology, Key Laboratory of Chongqing Education Commission of China, Chongqing, China

3. School of Mechanical Engineering and Automation, Beihang University, Beijing, China

Abstract

Fast medicine dispensing system (FMDS) as a kind of medical logistic robot can dispense many drugs for one prescription at the same time. To guarantee the sustainability of drug dispensation, it is required that FMDS replenish drugs rapidly. The traditional order picking model (OPM) is difficult to meet the demand of prompt replenishment. To solve the problems of prolonged refilling route and inefficiency of drugs replenishment, a mixed refilling model based on multiple steps traveling salesman problem model (MTSPM) and vehicle routing problem model (VRPM) is proposed, and it is deployed in two circumstances of FMDS, including temporary replenishment mode (TRM) and concentrate replenishment mode (CRM). It not only meted the demand under different circumstances of drug replenishment but also shortened the refilling route significantly. First, the new pick sets were generated. Then, the orders of pick sets were optimized and the new paths were achieved. When the number of pickings is varied no more than 20, experiment results declared that the refilling route is the shortest by utilizing MTSPM when working under the TRM condition. Comparing MTSPM with OPM, the rate of refilling route length decreased up to 32.18%. Under the CRM condition, the refilling route is the shortest by utilizing VRPM. Comparing VRPM with OPM, the rate of refilling route length decreased up to 58.32%. Comparing VRPM with MTSPM, the rate of refilling route length has dropped more than 43.26%.

Funder

Chongqing Science and Technology Commission

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3