The kinematics modeling and parameter optimization of six-wheel lunar exploration robot

Author:

Guodong Zhai1,Peiyuan Gao12,Lili Meng1

Affiliation:

1. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing, China

2. Xuji Group Corporation, Xu Chang, Henan Province, China

Abstract

This article proposes a six-wheel lunar exploration robot which will move on the lunar surface. It is known that lunar surface is mostly rugged. When the six-wheel lunar exploration robot moves on the rugged surface, its centroid position will change, which has an impact on the vehicle obstacle performance and anti-overturning performance, and so on. Therefore, it is very important to analyze the centroid domain of the robot. In order to get the relation between centroid domain and position as well as the posture equation during the motion process, the kinematics model of the robot is built based on the coordinate transforming relations. So the calculation formula of centroid domain and body posture equation at any movement position are obtained. The mathematical model of detection robot is analyzed by entity analysis. So the centroid vector model of radial angle change curve and the changing rule of both sides of the rocker arm angle and centroid vector mode are given. MATLAB [version 6.0] is used to optimize the parameters of the robot and ADAMS is used to simulate the process when the robot moving on the rugged lunar surface. The results show that the centroid domain is a flat area. Based on the calculations and simulations, the vertical displacement and the pitch angle of the robot are decreased with different degrees after the optimization of the rocker arm suspension and the integrated moving stable performance of the lunar exploration robot is obviously enhanced.

Funder

Beijing cross training programme for high level talents in higher education institutions

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Reference18 articles.

1. Dynamics and stability analysis on stairs climbing of wheel–track mobile robot

2. Innovative design for wheeled locomotion in rough terrain

3. Li S. Design parameters optimization and deployment experiment study of the rocker-bogie suspension for lunar exploration rover. Harbin: Harbin Institute of Technology, 2009, pp. 31–37.

4. Song C. Locomotion performance simulation and analysis of lunar rover based on virtual prototype. Changsha: Graduate School of National University of Defense Technology, 2005, pp. 9–17.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3