Smart three-dimensional processing of unconstrained cave scans using small unmanned aerial systems and red, green, and blue-depth cameras

Author:

Zhang Guoxiang1,Moyes Holley2,Chen YangQuan1ORCID

Affiliation:

1. Mechatronics, Embedded Systems and Automation (MESA) Lab, University of California, Merced, CA, USA

2. School of Social Sciences, Humanities, and Arts, University of California, Merced, CA, USA

Abstract

This article focuses on a novel three-dimensional reconstruction system that maps large archeological caves using data collected by a small unmanned aircraft system with red, green, and blue-depth cameras. Cave sites often contain the best-preserved material in the archeological record. Yet few sites are fully mapped. Large caves environment usually contains complex geometric structures and objects, which must be scanned with long overlapped camera trajectories for better coverage. Due to the error in camera tracking of such scanning, reconstruction results often contain flaws and mismatches. To solve this problem, we propose a framework for surface loop closure, where loops are detected with a compute unified device architecture accelerated point cloud registration algorithm. After a loop is detected, a novel surface loop filtering method is proposed for robust loop optimization. This loop filtering method is robust to different scan patterns and can cope with tracking failure recovery so that there is more flexibility for unmanned aerial vehicles to fly and record data. We run experiments on public data sets and our cave data set for analysis and robustness tests. Experiments show that our system produces improved results on baseline methods.

Funder

Center for Information Technology Research in the Interest of Society

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3