Multiobjective preimpact trajectory planning of space manipulator for self-assembling a heavy payload

Author:

Liu Yong1,Du Zhe1,Wu Zhe1ORCID,Liu Fei1,Li Xiaojun1

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, China

Abstract

To assemble a heavy payload to the spacecraft (free-floating base), the present study proposes a scheme of multiobjective trajectory planning for preimpact motion of redundant space manipulator (mounted on the base). Force impulse for self-assembly is derived as the function of joint angles/velocities, base pose, and impact direction. The trajectory planning problem is formulated as multiobjective optimization to minimize force impulse, base attitude disturbance, and energy consumption in the load-carrying process. A two-stage trajectory planning algorithm is proposed. To be specific, at the first stage, multiple desired configurations at the contact point are generated by position-level inverse kinematics with Newton–Raphson iterative method. At the second stage, joint trajectories satisfying joint angle limits and desired motion of the payload are parameterized by coefficients of sinusoidal polynomial functions. Multiobjective particle swarm optimization algorithm is adopted to solve the problem of multiobjective trajectory planning, and screening process is conducted to reserve nondominated solutions in limits of joint torques. The algorithm is implemented to a seven degrees of freedom space manipulator, and the effectiveness of the proposed method is verified by simulation results.

Funder

Hefei University of Technology Xuancheng Campus Doctoral Production-study Research Fund

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual Performance Optimization of 6-DOF Robotic Arm Trajectories in Biomedical Applications;Tikrit Journal of Engineering Sciences;2024-01-03

2. FBi-RRT: a path planning algorithm for manipulators with heuristic node expansion;Robotica;2023-12-27

3. A collision-free visual servoing method for two space manipulators capturing tumbling satellites;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-08-02

4. Trajectory planning method of 6-DOF modular manipulator based on polynomial interpolation;Journal of Computational Methods in Sciences and Engineering;2023-05-30

5. NA-OR: A path optimization method for manipulators via node attraction and obstacle repulsion;Science China Technological Sciences;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3