Path planning method with obstacle avoidance for manipulators in dynamic environment

Author:

Chen Gang1ORCID,Liu Dan1,Wang Yifan1,Jia Qingxuan1,Zhang Xiaodong2

Affiliation:

1. Beijing University of Posts and Telecommunications, Beijing, China

2. Beijing Institute of Spacecraft System Design Cast, Beijing, China

Abstract

Obstacle avoidance is of great importance for path planning of manipulators in dynamic environment. To help manipulators successfully perform tasks, a method of path planning with obstacle avoidance is proposed in this article. It consists of two consecutive phases, namely, collision detection and obstacle-avoidance path planning. The collision detection is realized by establishing point-cloud model and testing intersection of axis-aligned bounding boxes trees, while obstacle-avoidance path planning is achieved through preplanning a global path and adjusting it in real time. This article has the following contributions. The point-cloud model is of high resolution while the speed of collision detection is improved, and collision points can be found exactly. The preplanned global path is optimized based on the improved D-star algorithm, which reduces inflection points and decreases collision probability. The real-time path adjusting strategy satisfies the requirement of reachability and obstacle avoidance for manipulators in dynamic environment. Simulations and experiments are carried out to evaluate the validity of the proposed method, and the method is available to manipulators of any degree of freedom in dynamic environment.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3