Research on a mixed prediction method to vehicle integrated navigation systems

Author:

Zhao Di1ORCID,Qian Huaming1,Xu Dingjie2

Affiliation:

1. College of Automation, Harbin Engineering University, Harbin, China

2. College of Instrumentation science and Engineering, Harbin Institute of Technology, Harbin, China

Abstract

Aiming to improve the positioning accuracy of vehicle integrated navigation system (strapdown inertial navigation system/Global Positioning System) when Global Positioning System signal is blocked, a mixed prediction method combined with radial basis function neural network, time series analysis, and unscented Kalman filter algorithms is proposed. The method is composed by dual modes of radial basis function neural network training and prediction. When Global Positioning System works properly, radial basis function neural network and time series analysis are trained by the error between Global Positioning System and strapdown inertial navigation system. Furthermore, the predicted values of both radial basis function neural network and time series analysis are applied to unscented Kalman filter measurement updates during Global Positioning System outages. The performance of this method is verified by computer simulation. The simulation results indicated that the proposed method can provide higher positioning precision than unscented Kalman filter, especially when Global Positioning System signal temporary outages occur.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3