Affiliation:
1. Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran
Abstract
Nowadays, the usage of autonomous mobile robots that fulfill various activities in enormous number of applications without human’s interference in a dynamic environment are thriving. A dynamic environment is the robot’s environment which is comprised of some static obstacles as well as several movable obstacles that their quantity and location change randomly through the time. Efficient path planning is one the significant necessities of these kind of robots to do their tasks effectively. Mobile robot path planning in a dynamic environment is finding a shortest possible path from an arbitrary starting point toward a desired goal point which needs to be safe (obstacle avoidance) and smooth as well as possible. To achieve this target, simultaneously satisfying a collection of certain constraints including the shortest, smooth, and collision free path is required. Therefore, this issue can be considered as an optimization problem, consequently solved via optimization algorithms. In this article, a new method based on cuckoo optimization algorithm is proposed for solving the mobile robot path planning problem in a dynamic environment. Furthermore, to diminish the computational complexity, the feature vector is also optimized (i.e. reduced in dimension) via a new proposed technique. The simulation results show the performance of proposed algorithm in finding a short, safe, smooth, and collision free path in different environment conditions.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献