Design and implementation of a multi-degrees-of-freedom cable-driven parallel robot with gripper

Author:

Lin Jonqlan1ORCID,Wu Chi Ying1,Chang Julian1

Affiliation:

1. Department of Mechanical Engineering, Chien Hsin University of Science and Technology, Taoyuan, Taiwan, Republic of China

Abstract

Cable-driven parallel robots comprise driven actuators that allow controlled cables to act in parallel on an end-effector. Such a robotic system has a potentially large reachable workspace, large load capacity, high payload-to-weight ratio, high reconfigurability, and low inertia, relative to rigid link serial and parallel robots. In this work, a multi-degrees-of-freedom cable-suspended robot that can carry out pick-and-place tasks in large workspaces with heavy loads is designed. The proposed cable-driven parallel robot is composed of a rigid frame and an end-effector that is suspended from eight cables—four upper cables and four lower cables. The lengths of the cables are computed from the given positions of the suspended end-effector using a kinematic model. However, most multi-cable-driven robots suffer from interference among the cables, requiring a complex control methodology to find a target goal. Owing to this issue with cable-driven parallel robots, the whole control structure decomposes positioning control missions and allocates them into upper level and lower level. The upper level control is responsible for tracking the suspended end-effector to the target region. The lower level control makes fine positional modifications. Experimental results reveal that the hybrid control mode notably improves positioning performance. The wide variety of issues that are considered in this work apply to aerostats, towing cranes, locomotion interfaces, and large-scale manufacturing that require cable-driven parallel robots.

Funder

Ministry of Science and Technology of the Republic of China, Taiwan

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3