Versatile implementation of a hardware–software architecture for development and testing of brain–computer interfaces

Author:

Martinez-Ledezma Jorge Antonio1,Barron-Zambrano Jose Hugo1ORCID,Diaz-Manriquez Alan1,Elizondo-Leal Juan Carlos1,Saldivar-Alonso Vicente Paul1,Rostro-Gonzalez Horacio2ORCID

Affiliation:

1. Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Tampaulipas, Mexico

2. Departamento de Electrónica, DICIS, Universidad de Guanajuato, Salamanca, Gto, Mexico

Abstract

Brain–computer interfaces (BCI) have been focused on improving people’s lifestyles with motor or communication disabilities. However, the utilization of this technology has found news applications, such as increasing human capacities. Nowadays, several researchers are working on probing human capabilities to control several robotic devices simultaneously. The design of BCI is an intricate work that needs a long time to its implementation. For this reason, an architecture to design and implement different types of BCIs is presented in this article. The architecture has a modular design capable of reading various electroencephalography (EEG) sensors and controlling several robotic devices similar to the plug-and-play paradigm. To test the proposed architecture, a BCI was able to manage a hexapod robot and a drone was implemented. Firstly, a mobile robotic platform was designed and implemented. The BCI is based on eye blinking, where a single blinking represents a robot command. The command orders the robot to initiate or stops their locomotion for the hexapod robot. For the drone, a blink represents the takeoff or landing order. The blinking signals are obtained from the prefrontal and frontal regions of the head by EEG sensors. The signals are then filtered using temporal filters, with cutoff frequencies based on delta, theta, alpha, and beta waves. The filtered signals were labeled and used to train a classifier based on the multilayer perceptron (MLP) model. To generate the robot command, the proposal BCI used two models of MLP to ensure the classifier prediction. So, when the two classifiers make the same prediction, within a defined time interval, send the signal to the robot to start or stop its movement. The obtained results show that it is possible to get high precision to control the hexapod robot with a precision of 91.7% and an average of 81.4%.

Funder

PRODEP

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3