Using synthetic basis feature descriptor for motion estimation

Author:

Zhang Dong1,Desai Alok2,Lee Dah-Jye3ORCID

Affiliation:

1. School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China

2. Cubicscan, Inc., Farmington, UT, USA

3. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA

Abstract

Development of advanced driver assistance systems has become an important focus for automotive industry in recent years. Within this field, many computer vision–related functions require motion estimation. This article discusses the implementation of a newly developed SYnthetic BAsis (SYBA) feature descriptor for matching feature points to generate a sparse motion field for analysis. Two motion estimation examples using this sparse motion field are presented. One uses motion classification for monitoring vehicle motion to detect abrupt movement and to provide a rough estimate of the depth of the scene in front of the vehicle. The other one detects moving objects for vehicle surrounding monitoring to detect vehicles with movements that could potentially cause collisions. This algorithm detects vehicles that are speeding up from behind, slowing down in the front, changing lane, or passing. Four videos are used to evaluate these algorithms. Experimental results verify SYnthetic BAsis’ performance and the feasibility of using the resulting sparse motion field in embedded vision sensors for motion-based driver assistance systems.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3