An improved real-time object proposals generation method based on local binary pattern

Author:

Jiang Yanting1,Yan Jia1,Fan Ci’en1,Shi Wenxuan1,Deng Dexiang1

Affiliation:

1. Electronic Information School, Wuhan University, Wuhan, China

Abstract

Generating a group of category-independent proposals of objects in an image within a very short time is an effective approach to accelerate traditional sliding window search, which has been widely used in preprocessing step of object recognition. In this article, we propose a novel object proposals generation method to produce an order set of candidate windows covering most of object instances. With combination of gradient and local binary pattern, our approach achieves better performance than BING in finding occluded objects and objects in dim lighting conditions. In experiments on the challenging PASCAL VOC 2007 data set, we show that our approach is significantly more accurate than BING. In particular, using 2000 proposals, we achieve 97.6% object detection rate and 69.3% mean average best overlap. Moreover, our proposed method is very efficient and takes only about 0.006 s per image on a laptop central processing unit. The detection speed and high accuracy of proposed method mean that it can be applied to recognizing specific objects in robot visions.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3