Affiliation:
1. Institute of Automation Chinese Academy of Sciences, Beijing, China
Abstract
Visual tracking is a challenging computer vision task due to the significant observation changes of the target. By contrast, the tracking task is relatively easy for humans. In this article, we propose a tracker inspired by the cognitive psychological memory mechanism, which decomposes the tracking task into sensory memory register, short-term memory tracker, and long-term memory tracker like humans. The sensory memory register captures information with three-dimensional perception; the short-term memory tracker builds the highly plastic observation model via memory rehearsal; the long-term memory tracker builds the highly stable observation model via memory encoding and retrieval. With the cooperative models, the tracker can easily handle various tracking scenarios. In addition, an appearance-shape learning method is proposed to update the two-dimensional appearance model and three-dimensional shape model appropriately. Extensive experimental results on a large-scale benchmark data set demonstrate that the proposed method outperforms the state-of-the-art two-dimensional and three-dimensional trackers in terms of efficiency, accuracy, and robustness.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献