Affiliation:
1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2. University of Chinese Academy of Sciences, Beijing, China
Abstract
Object recognition is one of the essential issues in computer vision and robotics. Recently, deep learning methods have achieved excellent performance in red-green-blue (RGB) object recognition. However, the introduction of depth information presents a new challenge: How can we exploit this RGB-D data to characterize an object more adequately? In this article, we propose a principal component analysis–canonical correlation analysis network for RGB-D object recognition. In this new method, two stages of cascaded filter layers are constructed and followed by binary hashing and block histograms. In the first layer, the network separately learns principal component analysis filters for RGB and depth. Then, in the second layer, canonical correlation analysis filters are learned jointly using the two modalities. In this way, the different characteristics of the RGB and depth modalities are considered by our network as well as the characteristics of the correlation between the two modalities. Experimental results on the most widely used RGB-D object data set show that the proposed method achieves an accuracy which is comparable to state-of-the-art methods. Moreover, our method has a simpler structure and is efficient even without graphics processing unit acceleration.
Funder
National Natural Science Foundation of China
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献