A postprocessing and path optimization based on nonlinear error for multijoint industrial robot-based 3D printing

Author:

Fu Guoqiang123ORCID,Gu Tengda13,Gao Hongli13,Lu Caijiang13

Affiliation:

1. Engineering Research Center of Advanced Driving Energy-saving Technology, Ministry of Education, Southwest Jiaotong University, Chengdu, China

2. School of Mechanical Engineering, Sichuan University, Chengdu, China

3. Department of Electromechanical Measuring and Controlling, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China

Abstract

Multijoint industrial robots can be used for 3D printing to manufacture the complex freeform surfaces. The postprocessing is the basis of the precise printing. Due to the nonlinear motion of the rotational joint, nonlinear error is inevitable in multijoint industrial robots. In this article, the postprocessing and the path optimization based on the nonlinear errors are proposed to improve the accuracy of the multijoint industrial robots-based 3D printing. Firstly, the kinematics of the multijoint industrial robot for 3D printing is analyzed briefly based on product of exponential (POE) theory by considering the structure parameters. All possible groups of joint angles for one tool pose in the joint range are obtained in the inverse kinematics. Secondly, the nonlinear error evaluation based on the interpolation is derived according to the kinematics. The nonlinear error of one numerical control (NC) code or one tool pose is obtained. The principle of minimum nonlinear error of joint angle is proposed to select the appropriate solution of joint angle for the postprocessing. Thirdly, a path smoothing method by inserting new tool poses adaptively is proposed to reduce the nonlinear error of the whole printing path. The smooth level in the smoothing is proposed to avoid the endless insertion near the singular area. Finally, simulation and experiments are carried out to testify the effectiveness of the proposed postprocessing and path optimization method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3