Passive impact/vibration control and isolation performance optimization for space noncooperative target capture

Author:

Sun Chong12ORCID,Hou Xiaolei3

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an, Shaanxi, China

2. Advanced Space Operation and Energy Technology Research Center, Northwestern Polytechnical University, Xi’an, Shaanxi, China

3. School of Automation, Northwestern Polytechnical University, Xi’an, Shaanxi, China

Abstract

On-orbit capture is an important technique for the space debris removal, refueling, or malfunction satellite repairing. While due to the uncertainty of the motion parameters of the space noncooperative target, the impact between the capture device and the noncooperative target during the capturing process is inevitable, which may bring strong vibration perturbation to the base satellite, and potentially alter the position and the attitude of the servicing spacecraft, or even cause failure of on-orbit tasks. This article presents a new and alternative method for passive suppression of spacecraft impact and perturbation during noncooperative spacecraft capture. The passive device based on bioinspired X-shape is installed between the satellite and the capture device. In the capture process, nonlinear damping of the passive isolation structure can significantly reduce impact/vibration perturbation. For performance analysis, dynamic equations of the isolation system are established. Based on which, the relationship between structure parameters and isolation performance is systematically analyzed. Experiments are conducted for verification of the effectiveness of the proposed method. Moreover, an optimal process using the non-dominated sorting genetic algorithm II optimization method is developed to minimize impact/vibration perturbation effect, and optimal solutions can provide useful reference for the passive isolation system design.

Funder

China National Natural Science Foundation

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3