Affiliation:
1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China.
Abstract
Sometimes the automation equipment cannot solve all the problems for industrial enterprises, and human workers cannot be replaced by machines in production activities. The possibility that the workers develop work-related musculoskeletal disorders, while performing high intensity and repetitive installation and commissioning work over a long period of time, is very high. A mechanical design of a passive upper extremities exoskeleton suit to reduce the muscles effort of upper limbs is proposed in this article. Thereby, a decrease in the work-related musculoskeletal disorders risk is expected. To evaluate the ergonomic contribution of the passive upper extremities exoskeleton suit, both static and dynamic tool lift experiments were designed, in which 10 volunteers were asked to participate in the experiments. The surface electromyography is captured from these volunteers to measure the magnitude of muscle output forces that are applied with and then without passive upper extremities exoskeleton suit assistance during the process of manual handling, and the tests are collected for comparison. Results show that there is a significant decrease in the output force and fatigue in deltoid, biceps brachii, and brachioradiali, especially in biceps brachial which is up to 67.8%. The implementation of passive upper extremities exoskeleton suit is not only a benefit to reduce workers’ upper extremities fatigue but also ultimately increase the work efficiency by minimizing work-related musculoskeletal disorders and safety accidents.
Funder
Guangdong Province collaborative innovation and platform environment construction special fund Projects
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献