Design of a seed implantation robot with counterbalance and soft tissue stabilization mechanism for prostate cancer brachytherapy

Author:

Buyun Wang12,Yi Liang12ORCID,Dezhang Xu12,Yongde Zhang3ORCID,Yong Xu4

Affiliation:

1. School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, China.

2. Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu, China

3. Intelligent Machine Institute, Harbin University of Science and Technology, Harbin, China

4. Department of urology, The General Hospital of Chinese People’s Liberation Army, Beijing, China

Abstract

This article focuses on the topic of the structural design of surgical radioactive surgery robot for prostate cancer. To improve the weight-to-payload ratio of surgery robot end-effector, the energy consumption and stability of robot joint drive and reducing the displacement and deformation of needle insertion in soft tissue. This article discusses the new static torque balancing method and multi-needle insertion soft tissue stabilization mechanisms that may be used in previously articulated seed implantation robots. Compared with the existing balancing system schemes, we adopt the idea of mutual conversion of gravitational potential energy and elastic potential energy and establish a static balancing model. With preloaded displacement parameter of the spring α, the variable gravity torque balance of robot arm can be achieved. Torque and equivalent gravity balancing distribution with the spring balance system and the quantitative evaluation experiment were performed, and experiment results provide evidence that these spring balance devices can basically compensate the gravity torque of the robot arm. In addition, we used nonlinear spring–damper model to establish multi-needles insertion soft tissue force model. Then, a variable multi-needle insertion soft tissue stabilization device is designed with six working modes. The innovative design of this device is the use of the first four needles that are introduced simultaneously on either side of the midline. Initially completed displacement simulation of different numbers of needle insertion prostate tissue, experiment results indicate that multi-needle puncture mechanism could reduce prostate displacement in the y- or z-direction. By this method, the prostate may be fixed, thus this mechanism maybe reduces rotation of the prostate and enabling subsequent needles to be inserted accurately.

Funder

Science Research Major Program of Anhui Province of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perfect static balancing using Cardan-gear spring mechanisms;Mechanism and Machine Theory;2023-03

2. Development and Experimental Testing of a Robot-Assisted Positioning System for Brachytherapy;2022 International Conference on Service Robotics (ICoSR);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3