Semantic segmentation–aided visual odometry for urban autonomous driving

Author:

An Lifeng1,Zhang Xinyu2,Gao Hongbo3ORCID,Liu Yuchao1

Affiliation:

1. Department of Computer Science and Technology, Tsinghua University, Beijing, China

2. Information Technology Center, Tsinghua University, Beijing, China

3. Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China

Abstract

Visual odometry plays an important role in urban autonomous driving cars. Feature-based visual odometry methods sample the candidates randomly from all available feature points, while alignment-based visual odometry methods take all pixels into account. These methods hold an assumption that quantitative majority of candidate visual cues could represent the truth of motions. But in real urban traffic scenes, this assumption could be broken by lots of dynamic traffic participants. Big trucks or buses may occupy the main image parts of a front-view monocular camera and result in wrong visual odometry estimation. Finding available visual cues that could represent real motion is the most important and hardest step for visual odometry in the dynamic environment. Semantic attributes of pixels could be considered as a more reasonable factor for candidate selection in that case. This article analyzed the availability of all visual cues with the help of pixel-level semantic information and proposed a new visual odometry method that combines feature-based and alignment-based visual odometry methods with one optimization pipeline. The proposed method was compared with three open-source visual odometry algorithms on Kitti benchmark data sets and our own data set. Experimental results confirmed that the new approach provided effective improvement both on accurate and robustness in the complex dynamic scenes.

Funder

the Beijing Municipal Science and Technology Commission special majo

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3