Robot motion synthesis using ground reaction forces pattern

Author:

Luxman Ramamoorthy1,Zielinska Teresa2

Affiliation:

1. Politechnika Warszawska, Warszawa, Poland

2. MEiL, Politechnika Warszawska, Warszawa, Poland

Abstract

Gait generation in its realization stage in majority of bipeds involves inverse dynamics model with the need of pre-determined joint trajectories and the zero moment point method for final postural stability adjustments. This requires generation of such joint trajectories, where the zero moment point criterion is fulfilled and the human-like posture is kept. Such task is complex and still misses the universal solution. Preserving natural (human-like) and stable body posture under acting disturbances is an issue too. High computational costs, problem with disturbances rejection and controller complexity are the major disadvantages associated with such approaches. This article presents a method for motion control with forward dynamics model and ground reaction forces as the reference values. The ground reaction forces measured during real human walking are utilized here. A MATLAB/Simulink framework is used for testing the proposed synthesis of bipedal locomotion. The ground reaction forces recorded during the walk with different footwear are applied as the references. The obtained motion patterns and postures are compared with those of the human. Obtained results were satisfactory and justified the proposed approach.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Direct Optimal Control for Humanoids Based on Dynamics Representation in FPC Latent Space;IEEE Robotics and Automation Letters;2024-04

2. Human-Like Strategies Exploiting Momentum for Biped Robot Balance Recovery;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2021-11-06

3. Optimization of the ground reaction force for the humanoid robot balance control;Acta Mechanica;2021-08-12

4. Application of Floquet Theory to Human Gait Kinematics and Dynamics;Journal of Mechanisms and Robotics;2021-05-31

5. Investigation on ZMP Variation of 12-DoF Biped Robot in Screw Theory Framework;Lecture Notes in Mechanical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3