Online planning low-cost paths for unmanned surface vehicles based on the artificial vector field and environmental heuristics

Author:

Wen Naifeng12ORCID,Zhang Rubo12,Liu Guanqun12,Wu Junwei12,Qu Xingru3

Affiliation:

1. School of Electromechanical Engineering, Dalian Minzu University, Dalian, China

2. Key Laboratory of Intelligent Perception and Advanced Control of State Ethnic Affairs Commission, China

3. School of Naval Architecture and Ocean Engineering, Dalian Maritime University, Dalian, China

Abstract

The study is concerned with the problem of online planning low-cost cooperative paths; those are energy-efficient, easy-to-execute, and low collision probability for unmanned surface vehicles (USVs) based on the artificial vector field and environmental heuristics. First, we propose an artificial vector field method by following the global optimally path and the current to maximize the known environmental information. Then, to improve the optimal rapidly exploring random tree (RRT*) based planner by the environment heuristics, a Gaussian sampling scheme is adopted to seek for the likely samples that locate near obstacles. Meanwhile, a multisampling strategy is proposed to choose low-cost path tree extensions locally. The vector field guidance, the Gaussian sampling scheme, and the multisampling strategy are used to improve the efficiency of RRT* to obtain a low-cost path for the virtual leader of USVs. To promote the accuracy of collision detection during the execution process of RRT*, an ellipse function-based bounding box for USVs is proposed with the consideration of the current. Finally, an information consensus scheme is employed to quickly calculate cooperative paths for a fleet of USVs guided by the virtual leader. Simulation results show that our online cooperative path planning method is performed well in the practical marine environment.

Funder

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3