Boosting sparsity-induced autoencoder: A novel sparse feature ensemble learning for image classification

Author:

Shi Rui1,Ji Jian1ORCID,Zhang Chunhui1,Miao Qiguang1

Affiliation:

1. School of Computer Science and Technology, Xidian University, Xi’an, People’s Republic of China

Abstract

As a kind of unsupervised learning model, the autoencoder is usually adopted to perform the pretraining to obtain the optimal initial value of parameter space, so as to avoid the local minimality that the nonconvex problem may fall into and gradient vanishment of the process of back propagation. However, the autoencoder and its variants have not taken the statistical characteristics and domain knowledge of the train set and also lost plenty of essential representaions learned from different levels when it comes to image processing and computer vision. In this article, we firstly add a sparsity-induced layer into the autoencoder to exploit and extract more representative and essential features exist in the input and then combining the ensemble learning mechanism, we propose a novel sparse feature ensemble learning method, named Boosting sparsity-induced autoencoder, which could make full use of hierarchical and diverse features, increase the accuracy and the stability of a single model. The classification results on different data sets illustrated the effectiveness of our proposed method.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3