Estimation of continuous thumb angle and force using electromyogram classification

Author:

Siddiqi Abdul Rahman1,Sidek Shahrul Naim1

Affiliation:

1. Department of Mechatronics Engineering, International Islamic University Malaysia, Gombak, Kuala Lumpur, Selangor, Malaysia

Abstract

Human hand functions range from precise minute handling to heavy and robust movements. Remarkably, 50% of all hand functions are made possible by the thumb. Therefore, developing an artificial thumb that can mimic the actions of a real thumb precisely is a major achievement. Despite many efforts dedicated to this area of research, control of artificial thumb movements in resemblance to our natural movement still poses as a challenge. Most of the development in this area is based on discontinuous thumb position control, which makes it possible to recreate several of the most important functions of the thumb but does not result in total imitation. This work looks into the classification of electromyogram signals from thumb muscles for the prediction of thumb angle and force during flexion motion. For this purpose, an experimental setup is developed to measure the thumb angle and force throughout the range of flexion and simultaneously gather the electromyogram signals. Further, various features are extracted from these signals for classification and the most suitable feature set is determined and applied to different classifiers. A “piecewise discretization” approach is used for continuous angle prediction. Breaking away from previous research studies, the frequency-domain features performed better than the time-domain features, with the best feature combination turning out to be median frequency–mean frequency–mean power. As for the classifiers, the support vector machine proved to be the most accurate classifier giving about 70% accuracy for both angle and force classification and close to 50% for joint angle–force classification.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3