Deep submergence rescue vehicle docking based on parameter adaptive control with acoustic and visual guidance

Author:

Sun Yushan1,Ran Xiangrui1,Cao Jian1ORCID,Li Yueming1

Affiliation:

1. College of Shipbuilding Engineering, Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin, China

Abstract

In view of the difficulties in the attitude determination of wrecked submarine and the automatic attitude matching of deep submergence rescue vehicles during the docking and guidance of a submarine rescue vehicle, this study proposes a docking method based on parameter adaptive control with acoustic and visual guidance. This study omits the process of obtaining the information of the wrecked submarine in advance, thus saving considerable detection time and improving rescue efficiency. A parameter adaptive controller based on reinforcement learning is designed. The S-plane and proportional integral derivative controllers are trained through reinforcement learning to obtain the control parameters in the improvement of the environmental adaptability and anti-current ability of deep submarine rescue vehicles. The effectiveness of the proposed method is proved by simulation and pool tests. The comparison experiment shows that the parameter adaptive controller based on reinforcement learning has better control effect, accuracy, and stability than the untrained control method.

Funder

Equipment Pre-research Project

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3