Design of a fuzzy safety margin derivation system for grip force control of robotic hand in precision grasp task

Author:

Islek Canfer1ORCID,Ozdemir Ersin1ORCID

Affiliation:

1. Faculty of Engineering and Natural Sciences, Department of Electrical and Electronic Engineering, Iskenderun Technical University, İskenderun, Hatay, Turkey

Abstract

In this study, the aim was to grasp and lift an unknown object without causing any permanent change on its shape using a robotic hand. When people lift objects, they add extra force for safety above the minimum limit value of the grasp force. This extra force is expressed as the “safety margin” in the literature. In the conducted study, the safety margin is minimized and the grasp force was controlled. For this purpose, the safety margin performance of human beings for object grasping was measured by the developed system. The obtained data were assessed for a fuzzy logic controller (FLC), and the fuzzy safety margin derivation system (SMDS) was designed. In the literature, the safety margin rate was reported to vary between 10% and 40%. To be the basis for this study, in the experimental study conducted to measure the grip performance of humans, safety margin ratios ranging from 9% to 20% for different surface friction properties and different weights were obtained. As a result of performance tests performed in Matlab/Simulink environment of FLC presented in this study, safety margin ratios ranging from 8% to 21% for different surface friction properties and weights were obtained. It was observed that the results of the performance tests of the developed system were very close to the data of human performance. The results obtained demonstrate that the designed fuzzy SMDS can be used safely in the control of the grasp force for the precise grasping task of a robot hand.

Funder

the Mustafa Kemal University Scientific Research Projects Coordinatorship

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3