Affiliation:
1. Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung City, Taiwan, Republic of China
Abstract
In this study, a fuzzy cerebellar model articulation controller based on group-based strategy bacterial foraging optimization is proposed for mobile robot wall-following control. In fuzzy cerebellar model articulation controller, the inputs are the distance between the sonar and the wall, and the outputs are the angular velocity of two wheels. The proposed group-based strategy bacterial foraging optimization learning algorithm is used to adjust the parameters of fuzzy cerebellar model articulation controller model. The proposed group-based strategy bacterial foraging optimization has the advantages of global search, evolutionary strategies, and group evolution to speed up the convergent rate. A new fitness function is defined to evaluate the performance of mobile robot wall-following control. The fitness function includes four assessment factors which are defined as follows: (1) maintaining safe distance between the mobile robot and the wall, (2) ensuring successfully running a cycle, (3) avoiding mobile robot collisions, and (4) mobile robot running at a maximum speed. The experimental results show that the proposed group-based strategy bacterial foraging optimization obtains a better wall-following control than other methods in unknown environments.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献