A method to keep autonomous vehicles steadily drive based on lane detection

Author:

Wu Zhenyu1ORCID,Qiu Kai1,Yuan Tingning1,Chen Hongmei2ORCID

Affiliation:

1. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, China

2. College of Electrical Engineering, Henan University of Technology, Zhengzhou, Henan, China

Abstract

Existing studies on autonomous driving methods focus on the fusion of onboard sensor data. However, the driving behavior might be unsteady because of the uncertainties of environments. In this article, an expectation line is proposed to quantify the driving behavior motivated by the driving continuity of human drivers. Furthermore, the smooth driving could be achieved by predicting the future trajectory of the expectation line. First, a convolutional neural network-based method is applied to detect lanes in images sampled from driving video. Second, the expectation line is defined to model driving behavior of an autonomous vehicle. Finally, the long short-term memory-based method is applied to the expectation line so that the future trajectory of the vehicle could be predicted. By incorporating convolutional neural network- and long short-term memory-based methods, the autonomous vehicles could smoothly drive because of the prior information. The proposed method is evaluated using driving video data, and the experimental results demonstrate that the proposed method outperforms methods without trajectory predictions.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current Approaches in Traffic Lane Detection: a minireview;The Archives of Automotive Engineering – Archiwum Motoryzacji;2024-06-26

2. Machine Learning Algorithms for Autonomous Vehicles;Handbook of Formal Optimization;2024

3. Machine Learning Algorithms for Autonomous Vehicles;Handbook of Formal Optimization;2024

4. Self-driving Car Control Model Extension with Voice Commands Control;Proceedings of the Bulgarian Academy of Sciences;2023-11-27

5. Semi-supervised lane detection for continuous traffic scenes;Traffic Injury Prevention;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3