Detection of contributing object to driving operations based on hidden Markov model

Author:

Hashimoto Kohjiro1ORCID,Yamada Tetsuyasu1,Tsuchiya Takeshi1,Doki Kae2,Funabora Yuki3,Doki Shinji3

Affiliation:

1. Department of Applied Information Engineering, Suwa University of Science, Nagano, Japan

2. Department of Electrical Engineering, Aichi Institute of Technology, Aichi, Japan

3. Department of Electrical Engineering and Computer Science, Nagoya University, Aichi, Japan

Abstract

With increase in the number of elderly people in the Japanese society, traffic accidents caused by elderly driver is considered problematic. The primary factor of the traffic accidents is a reduction in their driving cognitive performance. Therefore, a system that supports the cognitive performance of drivers can greatly contribute in preventing accidents. Recently, the development of devices for visually providing information, such as smart glasses or head up display, is in progress. These devices can provide more effective supporting information for cognitive performance. In this article, we focus on the selection problem of information to be presented for drivers to realize the cognitive support system. It has been reported that the presentation of excessive information to a driver reduces the judgment ability of the driver and makes the information less trustworthy. Thus, indiscriminate presentation of information in the vision of the driver is not an effective cognitive support. Therefore, a mechanism for determining the information to be presented to the driver based on the current driving situation is required. In this study, the object that contributes to execution of avoidance driving operation is regarded as the object that drivers must recognize and present for drivers. This object is called as contributing object. In this article, we propose a method that selects contributing objects among the appeared objects on the current driving scene. The proposed method expresses the relation between the time series change of an appeared object and avoidance operation of the driver by a mathematical model. This model can predict execution timing of avoidance driving operation and estimate contributing object based on the prediction result of driving operation. This model named as contributing model consisted of multi-hidden Markov models. Hidden Markov model is time series probabilistic model with high readability. This is because that model parameters express the probabilistic distribution and its statistics. Therefore, the characteristics of contributing model are that it enables the designer to understand the basis for the output decision. In this article, we evaluated detection accuracy of contributing object based on the proposed method, and readability of contributing model through several experiments. According to the results of these experiments, high detection accuracy of contributing object was confirmed. Moreover, it was confirmed that the basis of detected contributing object judgment can be understood from contributing model.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3