Affiliation:
1. Department of Applied Information Engineering, Suwa University of Science, Nagano, Japan
2. Department of Electrical Engineering, Aichi Institute of Technology, Aichi, Japan
3. Department of Electrical Engineering and Computer Science, Nagoya University, Aichi, Japan
Abstract
With increase in the number of elderly people in the Japanese society, traffic accidents caused by elderly driver is considered problematic. The primary factor of the traffic accidents is a reduction in their driving cognitive performance. Therefore, a system that supports the cognitive performance of drivers can greatly contribute in preventing accidents. Recently, the development of devices for visually providing information, such as smart glasses or head up display, is in progress. These devices can provide more effective supporting information for cognitive performance. In this article, we focus on the selection problem of information to be presented for drivers to realize the cognitive support system. It has been reported that the presentation of excessive information to a driver reduces the judgment ability of the driver and makes the information less trustworthy. Thus, indiscriminate presentation of information in the vision of the driver is not an effective cognitive support. Therefore, a mechanism for determining the information to be presented to the driver based on the current driving situation is required. In this study, the object that contributes to execution of avoidance driving operation is regarded as the object that drivers must recognize and present for drivers. This object is called as contributing object. In this article, we propose a method that selects contributing objects among the appeared objects on the current driving scene. The proposed method expresses the relation between the time series change of an appeared object and avoidance operation of the driver by a mathematical model. This model can predict execution timing of avoidance driving operation and estimate contributing object based on the prediction result of driving operation. This model named as contributing model consisted of multi-hidden Markov models. Hidden Markov model is time series probabilistic model with high readability. This is because that model parameters express the probabilistic distribution and its statistics. Therefore, the characteristics of contributing model are that it enables the designer to understand the basis for the output decision. In this article, we evaluated detection accuracy of contributing object based on the proposed method, and readability of contributing model through several experiments. According to the results of these experiments, high detection accuracy of contributing object was confirmed. Moreover, it was confirmed that the basis of detected contributing object judgment can be understood from contributing model.
Subject
Artificial Intelligence,Computer Science Applications,Software